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ABSTRACT: This study describes a non-separative headspace solid phase microextraction−mass spectrometry (HS-SPME-MS)
approach, in view of its application to online monitoring of a roasting process. The system can quickly provide representative and
diagnostic fingerprints of the volatile fraction of samples and, in combination with appropriate chemometric pattern recognition
and regression techniques, can successfully be applied to characterize, discriminate, and/or correlate patterns with the roasting
process. Eighty coffee samples of different varieties, geographical origins, and blends were analyzed. The experimental HS-SPME-
MS results show that the TIC fingerprint can be used to discriminate the degree of roasting; diagnostic ion abundance(s) or
ratios were closely correlated with the roasting process; both could successfully be used as markers or analytical decision makers,
to monitor roasting processes online, and to define quality and safety of roasted coffee.
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■ INTRODUCTION

The roasting process is a significant factor in determining coffee
flavor. In particular, coffee aroma depends on the specific quali-
quantitative distribution of various components. These are
mainly volatile medium-to-high polarity compounds, deriving
from drying and from the heat-browning related to the roasting
conditions, above all temperature and time. The aroma also
depends on the species, variety, and blend, as well as on
geographical origin.1−4 Conversely, the roasting process can
also produce some compounds that must be monitored because
of their toxic properties; this is the case of furan and its
derivatives, which have shown carcinogenic and cytotoxic
activities.5−8 The reduction of furan in coffee is therefore highly
recommended and may be achieved by optimizing the roasting
process in all of its steps (i.e., roasting, cooling, degassing, and
grinding) while, obviously, keeping the organoleptic properties
unaltered.
The effect of the roasting process on coffee beans is generally

described in terms of the degree of roasting, and is usually
evaluated through several chemical and physical parameters,
including external color of the beans, loss of weight during
roasting, and variations in chemical composition, as well as
through the development of sensory characteristics.9,10 These
parameters concur to define the degree of roasting, although to
date a concise, clear, and universally accepted evaluation
protocol does not exist. The most widely used parameter to
determine degree of roasting in day-to-day practice is color,
measured through the light reflectance of ground beans or, still
today, by visual inspection. The latter method is still valid partly
because the industry uses a constant quality and variety of
green coffee, combined with constant time−temperature
conditions and roasting plant. Dry matter loss is also
considered to provide a reliable and complementary evaluation
of the degree of roasting, including for in-plant determination.9

Correct conditions for industrial roasting processes are, in
general, obtained by appropriately scaling up the results of

experiments from pilot or laboratory plants monitored by
physical methods.
This study describes a non-separative headspace solid phase

microextraction−mass spectrometry method (HS-SPME-MS),
in view of its possible application to the online monitoring of
roasting processes. HS-SPME is a high-concentration-capacity
technique offering good recoveries and ease of automation, that
can be combined directly online with mass spectrometry.11

Non-separative MS methods, better known as mass spectrom-
etry-based electronic nose (MS-EN),12−16 were introduced by
Marsili17 to study off-flavors in milk; they have since been
applied successfully to characterizing several matrices, in
particular in the food field.18−20 They provide a representative,
diagnostic, and generalized mass spectrometric fingerprint of
the volatile fraction of a sample, analyzed directly without prior
chromatographic separation, in which each m/z ratio acts as a
“sensor” whose intensity derives from the contribution of each
compound producing that fragment. These methods, in
combination with appropriate chemometric elaboration, can
be used to quickly characterize and discriminate samples within
a set and to correlate them with a technological process (e.g.,
coffee roasting). MS-EN can also be used to monitor target
compounds in a group of samples, provided that specific and
diagnostic ions are obtained with a compatible ion generation
mode (EI, CI, APCI, PTR, etc.).
Mass spectral fingerprints, or diagnostic ion abundance(s),

were here used both as marker and as analytical decision maker
(ADM)21 to monitor coffee roasting degree, in view of the
possibility of combining a mass spectrometer directly online to

Special Issue: IX Italian Congress of Food Chemistry

Received: July 14, 2012
Revised: October 17, 2012
Accepted: October 22, 2012
Published: October 22, 2012

Article

pubs.acs.org/JAFC

© 2012 American Chemical Society 1652 dx.doi.org/10.1021/jf303067q | J. Agric. Food Chem. 2013, 61, 1652−1660



a roasting machine. In particular, the results are reported of a
study aimed at correlating HS-SPME-MS profile and coffee
color, as a further tool to characterize roasting processes.

■ MATERIALS AND METHODS
Samples. Eighty roasted coffee samples from different geographical

origins, of different varieties and blends (100% Arabica, 100% Robusta,
50/50% Arabica−Robusta blend, and several commercial blends) at
different degrees of roasting were supplied by Lavazza (Turin, Italy)
over a period of 12 months. Colors of samples were measured, by
ground bean light reflectance, with a single-beam Neuhaus Neotec
Color Test II instrument, at wavelength 900 nm, on 25−30 g of
ground coffee. Table 1 lists the samples with their color values. A set of
100 coffee pods from the same lot (a 50/50 Arabica and Robusta
blend) for espresso machines was stored at −18 °C and used as
reference to standardize the HS-SPME system performance over time.
Headspace Solid Phase Microextraction (HS-SPME) Sam-

pling and GC Analysis Conditions. The SPME device and fibers
were from Supelco (Bellefonte, PA, USA). Divinylbenzene/carboxen/
polydimethylsiloxane (DVB/CAR/PDMS) df 50/30 μm, 2 cm long

fibers were used, conditioning them before use as recommended by
the manufacturer.22

Volatiles were sampled by automated headspace solid phase
microextraction (auto-HS-SPME) using an MPS-2 multipurpose
sampler (Gerstel, Mülheim a/d Ruhr, Germany) online integrated
with an Agilent 7890 GC unit coupled to an Agilent 5975 MS detector
(Agilent, Little Falls, DE, USA). Five hundred milligrams of ground
roasted coffee in a 20 mL screw-cap vial were sampled by HS-SPME at
50 °C for 10 min.10 All samples were analyzed in triplicate. Three
fibers were selected from different lots, after preliminary testing to
establish their sampling performance, so as to select equivalent fibers
for use throughout the entire analysis period (see HS-SPME Fiber
Performance Evaluation). Fiber performance was monitored through-
out the study on an additional set of coffee pod samples, and on 5 μL
of a 2 mg/mL standard solution of α- and β-thujone in dibutyl
phthalate.

Non-separative Analysis, GC Unit Conditions: oven and injector
temperature, 250 °C; injection mode, split; split ratio, 1/10; carrier
gas, helium; flow rate, 0.4 mL/min; fiber desorption time and
reconditioning, 3 min; transfer column, deactivated fused silica tubing
(dc = 0.10 mm, length = 6.70 m) (Mega, Legnano (Milan), Italy).

Table 1. Coffee Samples Together with Varieties and Blends, Color Values, and Degrees of Roasting

sample code variety or blend color value roasting degree sample code variety or blend color value roasting degree

Ara1 Arabica 61 light Rob13 Robusta 58 light
Ara2 Arabica 51 medium Rob14 Robusta 50 medium
Ara3 Arabica 40 dark Rob15 Robusta 40 dark
Rob1 Robusta 61 light Ble13 blend 50/50 60 light
Rob2 Robusta 50 medium Ble14 blend 50/50 49 medium
Rob3 Robusta 40 dark Ble15 blend 50/50 38 dark
Ble1 blend 50/50 59 light Ara16 Arabica 61 light
Ble2 blend 50/50 49 medium Ara17 Arabica 51 medium
Ble3 blend 50/50 39 dark Ara18 Arabica 42 dark
Ara4 Arabica 59 light Rob16 Robusta 62 light
Ara5 Arabica 49 medium Rob17 Robusta 50 medium
Ara6 Arabica 40 dark Rob18 Robusta 40 dark
Rob4 Robusta 60 light Ble16 blend 50/50 62 light
Rob5 Robusta 50 medium Ble17 blend 50/50 49 medium
Rob6 Robusta 41 dark Ble18 blend 50/50 39 dark
Ble4 blend 50/50 61 light C1 commercial 57 light
Ble5 blend 50/50 51 medium C2 commercial 53 medium
Ble6 blend 50/50 42 dark C3 commercial 47 medium
Ara7 Arabica 62 light C4 commercial 53 medium
Ara8 Arabica 51 medium C5 commercial 58 light
Ara9 Arabica 39 dark C6 commercial 39 dark
Rob7 Robusta 62 light C7 commercial 56 light
Rob8 Robusta 49 medium C8 commercial 58 light
Rob9 Robusta 40 dark C9 commercial 43 dark
Ble7 blend 50/50 60 light C10 commercial 48 medium
Ble8 blend 50/50 51 medium C11 commercial 39 dark
Ble9 blend 50/50 40 dark C12 commercial 52 medium
Ara10 Arabica 62 light C13 commercial 50 medium
Ara11 Arabica 50 medium C14 commercial 43 dark
Ara12 Arabica 41 dark C15 commercial 48 medium
Rob10 Robusta 59 light C16 commercial 61 light
Rob11 Robusta 51 medium C17 commercial 52 medium
Rob12 Robusta 38 dark C18 commercial 47 medium
Ble10 blend 50/50 58 light C19 commercial 56 light
Ble11 blend 50/50 49 medium C20 commercial 40 dark
Ble12 blend 50/50 38 dark C21 commercial 47 medium
Ara13 Arabica 59 light C22 commercial 57 light
Ara14 Arabica 49 medium C23 commercial 48 medium
Ara15 Arabica 40 dark C24 commercial 46 medium

C25 commercial 52 medium
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MSD Conditions: ionization, EI mode at 70 eV; transfer line, 280
°C. Standard tuning was used, and the scan range was set at m/z 35−
350 with a scanning rate of 1.000 amu/s.
Separative GC-MS Analysis, Chromatographic Conditions:

injector temperature, 230 °C; injection mode, split; ratio, 1/10;
carrier gas, helium; flow rate, 1 mL/min; fiber desorption time and
reconditioning, 5 min; column, Megawax 20 M (df = 0.20 μm, dc =
0.20 mm, length = 50 m) (Mega); temperature program, from 40 °C
(1 min) to 200 °C at 3 °C/min and then to 250 °C (5 min) at 10 °C/
min.
MSD Conditions: ionization mode, EI (70 eV); scan range, 35−350

amu; ion source temperature, 230 °C; quadrupole temperature, 150
°C; transfer line temperature, 250 °C.
Data were acquired and processed with an Agilent MSD Chem

Station ver. E.02.01.1177.
Analytes were identified by their linear retention indices and EI-MS

spectra or by comparison with authentic standards or were tentatively
identified through their EI-MS fragmentation patterns and retention
indices.
Chemometric Analyses. Principal component analysis (PCA)

and orthogonal partial least-squares analysis (OPLS) were performed
with Pirouette software ver. 4.0 (Infometrix, Inc., Bothell, WA, USA).
The software package was used to automatically create ASCII files
from Agilent GC ChemStation data, using a postrun macro. The data
matrix consisted of as many rows as the number of samples (total
objects = 240) and 316 columns (m/z variables). Samples were
randomly divided into a training set (55 samples) and a test set (25
samples). PCA was used in the first step for pattern recognition
analysis, to visualize information and sample clusters, in particular as a
function of the technological process. OPLS analysis was then carried
out to correlate color (as a marker of the degree of roasting) to the
chemical fingerprint. Data were pretreated by baseline correction,
through noise subtraction, and by internal normalization of the signal
from each sample; they were subsequently preprocessed by mean-
centering.

■ RESULTS AND DISCUSSION

Compared to separative GC-MS profiles, MS-EN patterns
provide a fast response; however, the significance of the TIC is

low, and less information can apparently be obtained from the
MS profile. This is because the intensity of each fragment (m/
z) is “built up” from the contributions of each component of
the sample involved in generating that ion during its ionization
process. Figure 1 gives the HS-SPME-GC-MS (a) and the HS-
SPME-MS-TIC profiles (b), together with the mass spectral
fingerprint (c) of an Arabica coffee sample. Table 2 lists the
components identified in the HS-SPME-GC-MS profile of the
same Arabica sample, together with their target (TI) and
qualifier ions (Qi).
When HS-SPME-MS is applied, it is mandatory to use

chemometric techniques to “extract” data from the MS profile
that can provide significant information. However, when a
mathematical model is generated and used to classify or
correlate the composition or characteristics of a sample and to
reveal the resources of hidden information, one of the main
limits is profile precision over a long period. This variability can
reduce the effectiveness of a successful model, generated with a
training set, when applied to routine analyses. The most critical
points in the case of HS-SPME-MS are SPME fiber
performance and MS signal instability; the latter may be due
to ion source contamination, aging of electron multiplier, and/
or filament electron emission. These limits can be overcome by
(i) evaluating the response of a suitable number of SPME fibers
and monitoring it continually, (ii) checking electron multiplier
response over time, and (iii) standardizing the MS profile
through internal normalization.

HS-SPME Fiber Performance Evaluation. SPME fiber
effectiveness was evaluated initially in terms of total fingerprint
areas: this was aimed at minimizing sampling errors/
discriminations, in view of the extended time interval (12
months) covered by this study, and of the large number of
samples and replicates expected to be run. As discussed
elsewhere,23 the sampling performance of three DVB/CAR/
PDMS fibers from different lots was tested on coffee pod
samples and on an α- and β-thujone standard solution, to

Figure 1. HS-SPME-GC-MS (a) and HS-SPME-TIC-MS profiles (b) and mass spectral fingerprint (c) of an Arabica coffee sample.
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classify them on the basis of the recovery provided, and to
monitor any change over time. Normalized spectral fingerprint
areas of the coffee volatile fraction of five replicates from the
same pod for each fiber (F1, F2, F3) were submitted to analysis
of variance (ANOVA). The one-way ANOVA results on the
replicates for each fiber are available in Table S1 in the
Supporting Information and showed that the null hypothesis
(“there is no difference among the fibers in terms of absolute
peak areas of the selected target analytes”) was false. Tukey’s
test classified F1 and F3 as belonging to the same group, and
these were therefore adopted for all experiments. Similar results
were obtained with α- and β-thujone standard solution. When
additional fibers were necessary, they were submitted to the
entire test routine, analyzing reference coffee pod samples.
Normalized spectral fingerprint area values had to fall within

5% variability (expressed as RSD%) as established during
performance testing.

Precision and Internal Normalization. Precision, ex-
pressed as repeatability and intermediate precision of HS-
SPME-MS on reference coffee pod samples, was evaluated over
the entire period. Repeatability was calculated over five analyses
of coffee in the same pod, and the MS profile fragments of each
sample were normalized versus the most intense ions (m/z 43,
basic peak) taken as 1; each m/z intensity value is expressed as
a percentage of the intensity of the basic m/z fragment.14,24

Repeatability is expressed as relative standard deviation percent
(RSD%) on the total areas of the normalized fingerprints and
on some diagnostic m/z ions characteristic of certain
components related to roasting, aroma, or toxic chemicals.
Intermediate precision was calculated as described above over
five analyses of the coffee pod, carried out monthly over a

Table 2. Markers Identified in HS-SPME-GC-MS Profile of an Arabica Roasted Sample Together with Their Target (TI) and
Qualifier (Qi) Ions

ID compound retention time (min) ITCW ITOV1 TI Qi1 Qi2

1 furan 3.74 837 500 68 58 39
2 2-methylfuran 4.49 873 586 82 81 53
3 2-methylbutanal 5.09 903 641 86 57 41
4 3-methylbutanal 5.09 904 635 86 71 57
5 2,5-dimethylfuran 5.86 938 691 96 95 81
6 2,3-butanedione 6.31 960 555 86 57 43
7 2,3-pentanedione 8.49 1043 668 100 57 43
8 2-vinylfurana 9.00 1059 94 65 66
9 2,3-hexanedione 10.88 1117 756 43 71 43
10 1-methylpyrrole 11.18 1124 715 81 80 66
11 2-vinyl-5-methylfurana 11.79 1139 108 107 79
12 pyridine 12.62 1165 720 79 52 39
13 pyrazine 13.85 1195 709 80 53 70
14 methylpyrazine 16.08 1249 802 94 67 53
15 3-hydroxy-2-butanone 16.84 1265 681 88 73 45
16 1-hydroxy-2-propanone 17.42 1278 626 74 43 41
17 2,5-dimethylpyrazine 18.45 1306 893 108 81 42
18 2,6-dimethylpyrazine 18.74 1313 889 108 81 42
19 ethylpyrazine 19.01 1318 895 107 108 80
20 2,3-dimethylpyrazine 19.45 1329 904 108 67 93
21 1-hydroxy-2-butanone 20.57 1353 732 88 57 42
22 3-ethyl-pyridine 20.85 1364 934 107 92 79
23 2-ethyl-6-methylpyrazine 21.23 1371 977 121 122 94
24 2-ethyl-5-methylpyrazine 21.46 1376 981 121 122 94
25 trimethylpyrazine 21.96 1389 984 122 81 42
26 2-ethyl-3-methylpyrazine 22.01 1391 985 121 122 80
27 2-propylpyrazine 22.60 1402 985 94 107 122
28 2-ethyl-3,6-dimethylpyrazine 23.78 1427 1059 135 136 108
29 acetic acid 23.79 1432 547 60 43 45
30 furfural 24.45 1443 801 96 95 39
31 1-acetoxy-2-propanone 24.57 1448 825 43 86 116
32 2-acetylfuran 26.12 1483 882 95 110 39
33 furfuryl acetate 27.64 1521 963 81 98 140
34 5-methylfurfural 28.86 1551 933 110 109 81
35 1-methyl-2-carboxaldehyde pyrrole 30.67 1596 974 109 108 80
36 furfuryl alcohol 32.37 1640 823 98 81 69
37 1-furfurylpyrrole 38.58 1805 1152 81 147 53
38 guaiacol 39.54 1832 1064 109 124 81
39 2-acetylpyrrole 43.27 1941 1030 94 109 66
40 2-carboxaldehyde pyrrole 44.98 1991 976 95 94 66
41 p-vinylguaiacol 50.47 2163 1289 150 135 107

aMarkers tentatively identified through their MS-EI fragmentation patterns.
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period of 1 year. Results are available in Table S2 (Supporting
Information) and show very good intermediate precision, with
RSD% values for the total fingerprinting area of 3.16% and for

single ions ranging from 4.65% for m/z 45 to 20.08% for m/z
150.

Unsupervised Exploratory Analysis. Although color is
the most widely adopted parameter used to monitor the
roasting process, online monitoring of the development of the
volatile fraction by means of an analytical approach (HS-SPME-
MS) could be very useful to improve coffee standardization and
to optimize its aroma. Fifty-five coffee samples of different
varieties and blends, and roasted to different degrees, that is,
dark (color range, 35−42), medium (46−53) and light (57−
62), were analyzed. Their spectral fingerprints were processed
using an unsupervised approach, PCA, with the aim of finding
intersample and intervariable relationships with color (e.g.,
degree of roasting). This was done by visualizing sample
distribution on the score plots resulting from exploratory
analysis.31−33 PCA clearly showed that coffee samples are
discriminated by their roasting degree (color) on the first
principal component (1st PC), whereas different varieties are
separated on the second and third PCs (Figure 2a). The volatile
fraction included the well-known Maillard reaction products,
derived from nonvolatile precursor degradation (Amadori
compounds and deoxyosones), namely, furans, furanones, and
pyranones. Compounds resulting from the Strecker reaction of
α-dicarbonyls and amino acids were also present: 2,3-
butanedione, 2- and 3-methylbutanal, and alkylpyrazines, as
were sugar degradation products (furfural, 5-methylfurfural, and
furfuryl alcohol). The loading plot (Figure 2b) indicates those
m/z fragments that vary linearly with roasting degree; this
indirectly also shows which components change during
roasting: m/z 52 and 79 (mainly representative of pyridine
and furfuryl acetate), 81 (1-methylpyrrole, 1-furfurylpyrrole,
and furfuryl acetate), 98 (furfuryl alcohol), 108 (dimethylpyr-
azine groups: 2,3-, 2,5-, and 2,6-isomers), 109 (guaiacol), 110
(5-methylfurfural), and 96 (furfural) all have high relevance on
the first PC (explained variance = 59.90%) and can be taken as
markers of roasting, as they increase markedly with the roasting
degree. Some of them are also key aroma components and are
marked with an asterisk in Table S2 of the Supporting
Information.25,26 m/z 43 (2,3-hexandione, acetoxyacetone), 45

Figure 2. Score (a) and loading plots (b) of 55 different roasted coffee
fingerprints (first three PCs explained variance = 94.36%).
Preprocessing: mean-center, full-cross validation. Categories: light
roasting (solid triangle; color 57−62), medium roasting (empty
diamond; color 46−53), dark roasting (solid diamond; color 35−42).
Robusta, solid line; blend 50/50, dotted line; Arabica, dashed line.

Figure 3. Regression model for furan and 2-methylfuran on 55 coffee
samples versus the degree of roasting here represented by the
experimentally measured color.

Figure 4. OPLS regression model for color prediction as an
association measure between volatile fraction spectral fingerprint and
color of 25 commercial samples for which the origins, varieties, and
blends are unknown. a Correlation coefficient in prediction. b Standard
error in prediction. c Correlation coefficient in validation. d Standard
error in validation.
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(acetone and 3-hydroxy-2-butanone), 57 (2-oxopropyl prop-
anoate), 60 (acetic acid), 79 (pyridine), and 95−96
(acetylfuran, furfural) on the second PC (explained variance
= 23.31%) are markers of variety and, for the same roasting
degree, are more abundant in Arabica than in the blend or
Robusta samples; they decrease with roasting. Conversely, m/z
108 (mainly deriving from dimethylpyrazines) and 109
(guaiacol) are more intense in Robusta samples. These
considerations confirm the findings of a study by Ruosi et al.
using separative techniques.27

Some m/z variables vary linearly with roasting degree, for
example, furan and its homologues. Their formation is related
linearly to the degree of roasting, as shown in Figure 3;
determination coefficients were 0.7754 and 0.8917 for furan
and 2-methylfuran, respectively. Despite the presence of
interference by the same m/z fragment from other origins,
this close correlation with degree of roasting means that furan
and 2-methylfuran formation can be monitored during roasting
via their characterizing ions (target ions), that is, 68 and 82. If
the intensities of these ions are outside fixed limits of
acceptance, the relative compounds can be quantified by
conventional methods.28,29 In addition to conventional
separative methods, in 2011 Bicchi et al. proposed a quick
method to quantify these compounds by HS-SPME-MS; results
were comparable to those of conventional methods.30

“Supervised” Multivariate Regression. PCA results
show that the MS profile of the coffee volatile fraction is
closely correlated to the degree of roasting, thanks to some
variables (m/z values and the originating components) that are

characteristic of this technological process. OPLS was thus used
as a measure of correlation, that is, to evaluate the closeness of
association between the fingerprint of the volatile fraction of
coffee and its color, as an indicator of technological treatment,
rather than for its ability to predict coffee color.33,34 The OPLS
model requires a training set to demonstrate any correlation
between coffee color and aroma. Training (55) and test (25)
sets of samples, selected randomly and consisting of several
commercially available Arabica (100%) and Robusta (100%)
coffees of different origins, plus blends of the two at different
percentages, were established.
The OPLS regression model was first calculated on five PCs

and internally cross-validated on the training set data relating to
the volatile fraction spectral fingerprint and coffee color; the
model was then applied to the test set samples. The results
showed a highly negative linear correlation between measured
(i.e., all m/z fragments of the volatile fraction of coffee samples)
and predicted (color values) variables. The correlation between
spectral fingerprint and color is negative due to how color
values are expressed, because high color values indicate lightly
roasted samples. When used in prediction mode, the
correlation value was high (rpred 0.9472) with a satisfactory
standard error of prediction (SEP 2.53); values were within the
range of colors that discriminate the different degree roasting
(i.e., light, medium, and dark).
Figure 4 shows the association intensity relationship between

measured and predicted color values, using the model built with
the training set, and gives the parameters of the validated model
and of the prediction. As shown by PCA, the m/z ions with

Table 3. Indices (m/z Ratios) and Related Correlation Equation and Coefficients with the Color for Each Variety and/or Blend
Analyzed Together with Each Index Value and Its Standard Deviation

index m/z ratio variety or blend correl eq r2 index value index standard deviation mean color value

79/110 100% Arabica y = −119x + 8018 0.8754 1051 226 60
1765 358 50
3426 600 40

blend y = −110x + 7604 0.9872 1161 207 60
1796 310 50
3361 343 40

100% Robusta y = −63x + 4874 0.9550 1148 111 60
1621 135 50
2407 123 40

97/110 100% Arabica y = −51x + 3884 0.8946 879 76 60
1239 143 50
1898 139 40

blend y = −48x + 3872 0.9912 1013 101 60
1382 154 50
1979 139 40

100% Robusta y = −41x + 3571 0.9925 1148 118 60
1529 90 50
1958 107 40

98/110 100% Arabica y = −108x + 8043 0.8896 1692 172 60
2438 303 50
3846 325 40

blend y = −101x + 7913 0.9918 1960 206 60
2725 333 50
3971 285 40

100% Robusta y = −81x + 7034 0.9939 2203 252 60
2967 171 50
3818 229 40
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good correlation values (>±0.7) are related to compounds for
which abundance is affected markedly by the roasting process
and that are linked to the aroma developing during this process
(Figure 2b). The volatile fraction spectral fingerprint/color
correlation is important to monitor the roasting process
because, besides establishing a relationship between chemical
and physical data, it can give specific chemical information
about aroma changes with technological treatments.
Identification of Indices of the Degree of Roasting

and Possible Relationship with the Roasted Coffee
Color Value. This part of the study investigated the possibility
of identifying reliable chemical indices to be used for roasting
process control, as a function of some informative m/z ion
ratios. If correctly monitored on the laboratory scale, through
objective and measurable indices, the roasting process could be
directed so as to obtain the required aroma profile, in particular
when new blends are being developed. Starting from the above
PCA results, the two-by-two normalized area ratios of ions
closely correlated to the roasting process were calculated, using
a specific visual basic Excel macro. The resulting indices were
multiplied by 1000, to facilitate their handling, and were
arbitrarily considered significant only when there was a
difference of at least 100 units between light, medium, and
dark roasting degreed, in each variety or blend. Three indices
(i.e., m/z ratios) were found to be in common among Arabica,
Robusta, and blends: 79/110, 97/110, and 98/110; these
fragments are characteristic, among others, of pyridine, 5-
methylfurfural, 1-methylpyrrole, furfurylpyrrole, and furfuryl
alcohol. Each fragment varied linearly with color and, as a

consequence, with roasting degree. Table 3 gives correlation
equations and coefficients, between indices and color, for each
variety/blend, together with the average index values and
related standard deviation. These index values can successfully
be used to discriminate the degree of roasting with good
confidence, as is shown by their standard deviations that, within
the same variety, avoid any risk of two index intervals deriving
from two different roasting treatments (e.g., medium or dark)
overlapping.
These results are particularly interesting for industrial

applications, where in general the material being processed
comprises blends of green coffees with similar or unvaried
characteristics (variety, origins, etc.); they enable a physical
parameter (color) to be correlated to chemical markers
(indices) for the purpose of monitoring the roasting process.
Although the number of samples and varieties here tested is still
too small to be fully representative, these results open the
possibility not only to characterize the degree of roasting
through the MS profile but also to define indices of roasting
and significant values in view of an online process monitoring.
In addition, robust and reliable mathematical models to

predict color directly from the total spectral fingerprint and/or
index values can successfully be applied online, not only to
predict color but also to connect it to the aroma composition. A
PLS model equation was built and internally cross-validated
with the 55 samples of the training set and verified with the 25
samples of the test set (Table 4). The results show a close
correlation between indices (i.e., m/z ratios) and color, with 17
of 25 samples having a residual color measure below ±3 and
only two of them (C21 and C24) presenting a difference
between measured and predicted color of approximately −9.
Table 4 reports the PLS results, together with the parameters of
the model equation, and shows a close correlation within the
training set (rval = 0.9399) and a very satisfactory standard
error in color validation (SEV = 2.68). When the model
equation was applied to the samples of the test set, as expected,
the correlation coefficient in prediction decreased (rpred =
0.8416) and the standard error in prediction increased (SEP =
4.29), although the values were still satisfactory. These results
show a reliable correlation, although a less uniform training set
would be necessary to include a wider range of variables
(variety, origin, and roasting conditions) in a single equation.
The results are very satisfactory if the diversity represented is
considered, because the samples of the training set were very
different and their number was relatively small.
In conclusion, the results show that HS-SPME-MS for on/

inline control of coffee roasting process is a promising
approach, through which not only the evolution of the total
MS profile can be studied but also specific ions or ion ratios.
The quick non-separative method (HS-SPME-MS) described
shows that a correlation between spectral fingerprinting or
roasting indices and color can be found and that chemical
parameters can be used reliably to evaluate the degree of
roasting. The combination of MS profile and chemical indices
with physical parameters affords more reliable offline
monitoring or optimization of the roasting process, in particular
to control aroma development in the development of new
blends and to detect the formation of toxic compounds. In
addition, the reliability of these results may be exploited as a
reference to validate those obtained by coupling a laboratory
roasting machine to a mass spectrometer directly, for online
monitoring of the roasting process and marker develop-
ment.35−38 HS-SPME-MS can also be used as an analytical

Table 4. Color Measured with the Three Indices through
PLS Elaboration and Model Parameters

sample measured Y predicted Y residual Y upper limit lower limit

Ara2 51 52 −0.71 57 46
Rob3 40 45 −4.59 50 39
Ble1 59 56 2.73 61 51
Ara5 49 49 0.02 54 44
Ble4 61 56 4.82 61 51
Rob7 62 57 5.13 62 52
Rob8 49 48 1.12 53 43
Ara10 62 59 2.74 65 54
Rob10 59 54 5.18 59 49
Ble12 38 38 −0.43 44 33
Ara15 40 40 0.32 45 34
Ble13 60 57 3.21 62 52
Ble14 49 48 0.80 53 43
Ara18 42 42 0.08 47 37
Rob18 40 43 −2.90 48 38
Ble16 62 58 4.25 63 53
C19 56 62 −5.84 67 57
C21 47 57 −9.79 62 52
C24 46 55 −9.26 60 50
C14 43 36 6.66 42 31
C17 52 52 −0.43 58 47
C1 57 56 1.27 61 50
C4 53 54 −0.91 59 49
C6 39 41 −2.05 47 36
C10 48 55 −6.76 60 50
C12 52 53 −1.22 58 48

prediction eq rpred SEP
model

validation rval SEV

y = 0.754x + 12.71 0.8416 4.29 error on 2
factors

0.9399 2.68
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decision maker, that is, to select those sample(s) that have to be
analyzed by conventional separative methods, for instance,
when the non-separative intensities of some m/z fragments,
diagnostic of certain components, are outside the fixed limits of
acceptance or when the aroma profile is not in line with that of
the desired final product. Further studies are now under way to
extend the applicability of this method from model experiments
to real-world samples.
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